Approximating the marginal likelihood using copula

نویسندگان

  • David J. Nott
  • Robert Kohn
  • Mark Fielding
چکیده

Model selection is an important activity in modern data analysis and the conventional Bayesian approach to this problem involves calculation of marginal likelihoods for different models, together with diagnostics which examine specific aspects of model fit. Calculating the marginal likelihood is a difficult computational problem. Our article proposes some extensions of the Laplace approximation for this task that are related to copula models and which are easy to apply. Variations which can be used both with and without simulation from the posterior distribution are considered, as well as use of the approximations with bridge sampling and in random effects models with a large number of latent variables. The use of a t-copula to obtain higher accuracy when multivariate dependence is not well captured by a Gaussian copula is also discussed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

MLE-induced Likelihood for Markov Random Fields

Due to the intractable partition function, the exact likelihood function for a Markov random field (MRF), in many situations, can only be approximated. Major approximation approaches include pseudolikelihood [2] and Laplace approximation [33]. In this paper, we propose a novel way of approximating the likelihood function through first approximating the marginal likelihood functions of individua...

متن کامل

Marginal set likelihood for semiparametric copula estimation

Quantitative studies in many fields involve the analysis of multivariate data of diverse types, including measurements that we may consider binary, ordinal and continuous. One approach to the analysis of such mixed data is to use a copula model, in which the associations among the variables are parameterized separately from their univariate marginal distributions. The purpose of this article is...

متن کامل

Extending the rank likelihood for semiparametric copula estimation

Quantitative studies in many fields involve the analysis of multivariate data of diverse types, including measurements that we may consider binary, ordinal and continuous. One approach to the analysis of such mixed data is to use a copula model, in which the associations among the variables are parameterized separately from their univariate marginal distributions. The purpose of this article is...

متن کامل

On the bivariate Sarmanov distribution and copula. An application on insurance data using truncated marginal distributions

The Sarmanov family of distributions can provide a good model for bivariate random variables and it is used to model dependency in a multivariate setting with given marginals. In this paper, we focus our attention on the bivariate Sarmanov distribution and copula with different truncated extreme value marginal distributions. We compare a global estimation method based on maximizing the full log...

متن کامل

Spatial Interpolation Using Copula for non-Gaussian Modeling of Rainfall Data

‎One of the most useful tools for handling multivariate distributions of dependent variables in terms of their marginal distribution is a copula function‎. ‎The copula families capture a fair amount of attention due to their applicability and flexibility in describing the non-Gaussian spatial dependent data‎. ‎The particular properties of the spatial copula are rarely ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008